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Summary. Cyclic conjugation in phenes is examined by means of the Bosanac Gutman-Aihara 

method. In contrast to the predictions based on the analysis of Kekul~ or Clar structures, we find that 
when going along the hexagons of a phene molecule, cyclic conjugation varies in a rather non-uniform 
manner. In contrast to a number of other homologous series of benzenoid hydrocarbons, the intensity 
of cyclic conjugation in phenes increases when going towards the center of the molecule. 
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Theoretische Untersuchung der cyclischen Konjugation in Phenen: Einige bisher unbekannte 
Eigenschafien 

Zusammenfassung. Die cyclische Konjugation in Phenen wird mittels der Bosanac-Gutman-Aihara- 
Methode untersucht. Im Gegensatz zu auf der Analyse yon Kekuld- oder Clar-Strukturen beruhenden 
Voraussagen variiert die cyclische Konjugation entlang der Sechsecke eines Phenmolekiils ziemlich 
unregelmfiBig. Anders als bei anderen homologen benzenoiden Kohlenwasserstoffen nimmt bei 
Phenen die Intensit/it der cyclischen Konjugation zum Zentrum des Molekiils hin zu. 

Introduction 

In 1977, Bosanac and one of the present authors [1,2] developed a method for 
calculating the effect on an individual cycle on the total re-electron energy of 
polycyclic conjugated molecules. At the same time, Aihara put forward a similar, but 
not identical approach [-3]. Since then, the theory of cyclic conjugation, based on the 
consideration of the energy-effects of various cycles in conjugated molecules, was 
elaborated in due detail and applied to a variety of re-electron systems. One of the 
current directions of research in this area is the study of cyclic conjugation in 
benzenoid hydrocarbons [3-17]. The vast empirical material collected in Refs. 
[2-12, 14-17] made it possible to establish a number of general regularities for the 
pattern of cyclic conjugation in benzenoid systems. Of them we re-formulate the 
following two. 

(A) The energy-effect caused by cyclic conjugation is almost always in harmony with the predictions 
based on the examination of the KekuId and Clar structures. In parIicular, the number of times 
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a cycle is conjugated in the KekulO structures (in the sense of the Herndon-Radi~ conjugated circuit 
theory [-18-25]), is roughly proportional to the intensity of cyclic conjugation, as measured by the 
respective (stabilizing) energy-effect; cycles which are conjugated only in a few Kekuld structures, or 
are never conjugated, have small (either stabilizing or destabilizing) energy-effects. The number of 
times an aromatic sextet is located in a hexagon (in the sense of Clar's aromatic sextet theory [25, 
26]) is roughly proportional to the energy-effect of that hexagon. 

(B) In catacondensed benzenoid hydrocarbons, the intensity of cyclic conjugation (as measured by the 
energy-effect) is maximal at the terminal hexagons, and diminishes when going towards the center 
of the molecule. In linear hexagonal chains, the energy-effects monotonically decrease from end 
towards center. 

Rule (A) was found to be valid for the great majori ty of benzenoid systems, but  in 
certain cases violations were observed [5, 12]. Rule (B) was verified on polyacenes 
[8], benzo-annelated polyacenes [9], fibonacenes [10], and some other homologous  
series containing chains of hexagons [12]; until now, no violation of rule (B) was 
discovered. 

In this paper we report  our findings concerning cyclic conjugation in phenes, 
a class of unbranched catacondensed benzenoid hydrocarbons  whose structure is 
depicted in Fig. 1. As a kind of surprise, in the case of phenes rule (B) is not  obeyed. 
Besides, when proceeding from the end of the molecule towards its center, some quite 
remarkable variations in the energy-effects occur which are not anticipated by the 
approaches based on the K e k u l d  and Clar  structures. 

We note in passing that the first five members  of the phene series (phenanthrene 
(h = 3), tetraphene (h = 4), pentaphene (h = 5), hexaphene (h = 6), and heptaphene 
(h = 7)) are known compounds  [27]; all are typical representatives of stable ben- 
zenoid hydrocarbons.  

The formula for the number  of K e k u l d  structures of phenes is easy to obtain: 

K{Ph} = (m + 1)(n+ 1)+  1 

where the notat ion used is same as in Fig. 1. Another way of writing this expression is 

K{Ph} = k[h + 1)/2]aJ + 1 

where [xj  denoting the greatest integer which is not  greater than x (for example, 
[7.00] = 7, [8.50J = 8, [9.99] = 9). 

A direct way to infer from the K e k u l ~  structures about  the extent of cyclic 
conjugation in individual cycles is to use R a n d i C s  local aromaticity index, defined as 

L A I ( G , Z )  = 2 K { G -  Z}/K{G} 

Ph n 

Fig. 1. The phene with h hexagons, h >~ 3; if h is odd, then 
m = n = (h - 1)/2 and the molecule has C2v symmetry: if h is 
even, then m+ 1 = n ~ h/2 and the symmetry is C~; two 
linear segments, embracing the hexagons 1,2,...,m, and 
m + 2, m + 3,..., h, respectively, are attached to the central 
hexagon (m + 1) 
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in Ref. [28]. Here, G stands for a molecular graph and G -  Z is the subgraph 
obtained by deleting from G the vertices of the cycle Z. If Z is a hexagon, then in the 
case of phenes we have 

f ~ + 1  for the hexagons 1,2,. . . ,m 
K{P h - Z }  = for the hexagon m + 1 

m +  1 for the hexagons m + 2 ,  m +  3,. . . ,h 

from which it follows that for the hexagons 1,2,...,m, forming the first linear 
segment of Ph (see Fig. 1): 

LAI(Ph, Z)= 2[[h/2] + 1] [[[(h + 1)/2121 + 1]-1; 

for the central hexagon of Ph: 

LAI(Ph, Z ) = 2 [ [ [ ( h +  1)/212j + 1]-1; 

whereas for the hexagons m + 2, m + 3,..., h, forming the second linear segment of Ph 
(see Fig. 1): 

LAI(Ph, Z) = 2[L(h+ 1)/21 + l l [L[(h + 1)/2] 2] + 1] -1 

What is important for us is that all hexagons within a linear segment of Ph have 
precisely the same LAI-values (examples illustrating this fact are found already in 
Ref. [28]). Hence, from the analysis of the Kekul~ structures we have to conclude 
that within a linear segment of the phene molecule the extent of cyclic conjugation is 
everywhere (approximately) the same. 

Reasoning based on the Clar aromatic sextet theory [25, 26] yields the very same 
conclusions. Ph has m.n distinct Clar formulas, all possessing two aromatic sextets. 
One aromatic sextet is uniformly distributed in the first linear segment (occurring 
n times in each of the rn hexagons), the other sextet is uniformly distributed in the 
second linear segment (occurring m times in each of the n hexagons). The central 
hexagon of Ph is (from the point of view of Clar's theory) void of any cyclic 
conjugation. 

Methods of Calculation, Results and Discussion 

Details of the Bosanac-Gutman-Aihara method by which one computes the effect of 
a cycle Z on the total re-electron energy of a conjugated re-electron system whose 
molecular graph is G, can be found elsewhere [1-3, 5, 12, 29-321. Employing HMO 
approximation and using/?-units, this effect is evaluated by means of the formula 

fo o I qS(G,ix) ef(G, Z) = _2 In dx 
~z ~b(a, ix) + 2q~(a - Z,ix) 

in which qS(H,x) stands for the characteristic polynomial of a graph H, and i = x/~Z1. 
The phene Ph contains a total of h(h+ 1)/2 cycles: h hexagons, h - 1  ten- 

membered cycles, h - 2 fourteen-membered cycles, h - 3 eighteen-membered cycles, 
etc. We computed the energy-effects of all these cycles for h = 3, 4,.. . ,  15. In Table 1, 
the ef values of all cycles of heptaphene and octaphene are given; these may be 
considered as typical for the phene series. Table 2 contains the energy-effects of the 
hexagons of Ph, 3 ~< h ~< 15. 
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Table 1. Theefvalues(in/3units)ofallcyclesofheptapheneandoctaphene;theirhexagons arelabelled 

according to Fig. 1; the larger cycles are denoted so that, for instance, 2 + 3 + 4  indicates the 

14-membered cycle embracing the hexagons 2, 3, and 4 

cycle Z ef(PT, Z) ef(P s, Z) cycle Z ef(P 7, Z) ef(P s, Z) 

1 0.0946 0.0950 4 + 5 + 6 0.0029 0.0022 

2 0.0630 0.0605 5 + 6 + 7 0.0215 0.0124 

3 0.0661 0.0662 6 + 7 + 8 - 0.0141 

4 0.0345 0.0346 1 + 2 + 3 + 4 0.0022 0.0020 

5 0.0661 0.0617 2 + 3 + 4 + 5 0.0015 0.0012 

6 0.0603 0.0497 3 + 4 + 5 + 6 0.0015 0.0010 

7 0.0946 0.0531 4 + 5 + 6 + 7 0.0022 0.0012 

8 - 0.0907 5 + 6 + 7 + 8 - 0.0107 

1 + 2 0.0332 0.0334 1 + 2 + 3 + 4 + 5 0.0012 0.0010 

2 + 3 0.0275 0.0277 2 + 3 + 4 + 5 + 6 0.0010 0.0007 

3 + 4 0.0071 0.0070 3 + 4 + 5 + 6 + 7 0.0012 0.0007 

4 + 5 0.0071 0.0068 4 + 5 + 6 + 7 + 8 - 0.0010 

5 + 6 0.0275 0.0202 1 + 2 + 3 + 4 + 5 + 6 0.0009 0.0006 

6 + 7 0.0332 0.0186 2 + 3 + 4 + 5 + 6 + 7 0.0009 0.0006 

7 + 8 0.0269 3 + 4 + 5 + 6 + 7 + 8 - 0.0006 

1 + 2 + 3  0.0215 0.0217 1 + 2 + 3 + 4 + 5 + 6 + 7  0.0009 0.0005 

2 + 3 + 4  0.0029 0.0028 2 + 3 + 4 + 5 + 6 + 7 + 8  - 0.0005 

3 + 4 + 5  0.0025 0.0022 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8  - 0.0005 

Table 2. The ef values (in units of 10- 4/3) of the hexagons of the first 13 members of the phene series; the 

hexagons are labelled according to Fig. 1 

h hexagons of Ph 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

3 

4 

5 

6 

7 
8 
9 

10 
11 

12 

13 
14 
15 

1586 534 1586 
1717 431 796 1048 

1087 835 361 835 1087 

1104 848 352 656 596 939 

946 603 661 345 661 603 946 
950 605 662 346 617 497 531 907 
909 532 499 617 347 617 499 532 909 

910 533 499 617 349 609 474 451 510 901 
902 511 451 474 608 351 608 474 451 511 902 

902 511 451 474 608 352 609 469 434 437 505 903 
903 505 437 434 469 608 353 608 469 434 437 505 903 
903 505 437 434 469 608 354 610 469 431 422 433 505 905 
906 505 433 422 431 469 610 355 610 469 431 422 433 505 906 
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Fig. 2. The highly non-uniform nature of cyclic 
conjugation in phenes: variation of the energy- 
effect (ef) of hexagons when going along the 
hexagonal chain (i = label of hexagons, accord- 
ing to Fig. 1); to show the details of this vari- 
ation, data for two unrealistically large phenes, 
P~9 and PRO, are presented; the P2o-curve is 
shifted upwards by 0.7 fi units 

A noteworthy property of cyclic conjugation in the phene series is that when 
going from one end of the molecule towards its center, the energy-effects of the 
hexagons first decrease, attain a minimum, and then increase again, reaching a new 
maximum at the hexagon m (or at the hexagon m + 2, if starting from the other end). 
The minimum value of the energy-effect is at the central hexagon (m + 1), the only 
detail which is in agreement with the KekulO-Clar model. This ususal form of 
conjugation is easly conceived from Table 2; a further illustrative example is given in 
Fig. 2. 

Essentially the same triple-minimum behavior is observed also in the case of 10-, 
14-, 18-, ... -membered cycles, with the only difference that their energy-effects are 
much smaller (see Table 1). 

As already pointed out, deliberations based on KekulO and Clar structures imply 
that the conjugation within each of the two linear segments of the phene molecule is 
more or less uniform. Our results indicate that this conclusion of the Kekuld-Clar 
model may be a drastic oversimplification. 

In a number of cases it was found that cyclic conjugation is most pronounced 
around the end of a hexagonal chain and is minimal in its central part. This feature 
could be rationalized by a kind of (electrostatic?) repulsion between the aromatic 
sextets. In the case of phenes, such an explanation would fail completely. Here it 
turns out that the positions most favorable for the aromatic sextets are the hexagons 
1, m, m + 2, and h. Two of them (the hexagons m and m + 2) are second neighbors and 
lie next to the center of the molecule. 

Concluding this paper we wish to point out some further (not unusual) properties 
of the energy-effects of phenes. From Table 1 we see that all cycles in phenes have 
positive (stabilizing) ef values and that the magnitude ofef (Ph, Z) decreases with the 
increasing size of the cycle Z. There is no noteworthy difference in the pattern of 
cyclic conjugation when h is odd (when the two linear segments are symmetry- 
equivalent) and when h is even (when the linear segments are of different length). 
Further, from Table 2 we see that with increasing size of the phene molecule, the 
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local non-uniformities in cyclic conjugation slightly decrease, but show no tendency 
to vanish. These, however, are properties shared by all catacondensed benzenoid 
molecules [2, 8-10, 12, 13]. 

The sum of the individual energy-effects of all cycles is known to differ from the 
overall (joint) effect of all cycles [32]. This is because the overall energy-effect 
contains collective contributions of pairs, triplets, etc. of cycles. Nevertheless, we find 
a very good linear correlation between the sum (o-) of individual effects and the 
overall energy-effect (co). The data for the first 13 phenes (3 ~< h ~< 15) give the 
regression line 

co= 1.516o--0.118 

with a correlation coefficient of 0.9996. Besides, for all values of h, except for h = 3 
and h=4,  the energy-contribution of hexagons is almost exactly 70% of the 
contribution of all individual cycles (a). 

Relations of the above kind were previously reported for other homologous 
series of catacondensed benzenoids [8, 10]. Recall that co is just a sort of resonance 
energy, as put forward by Aihara [33] and others [34]. 

When we decided to examine the cyclic conjugation in phenes (after so many 
similar benzenoid systems have already been analyzed), we did not expect to 
discover anything remarkably new. However, the findings we made show that there 
still may exist numerous hitherto unnoticed and unexplored features in the conjuga- 
tion modes of polycyclic 7~-electron species. This may be the case even for such 
exhaustively studied systems as are the benzenoid hydrocarbons. 
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